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Scaling theory for the statistics of self-avoiding walks on 
random lattices 
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Saha Institute of Nuclear Physics, 92 Acharyya Prafulla Chandra Road, Calcutta 700 009, 
India 
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Abstract. We study self-avoiding walks ( S A W )  on randomly diluted (quenched) lattices 
with direct configurational averaging over the moments of the S A W  distribution function. 
A scaling function representation of R,, the average end-to-end distance of N-step walks, 
is studied here both for S A W  on ( a )  the infinite percolation cluster and (hi  any cluster. We 
ha\ie shown that, at the percolation threshold, if R,, - N”’”‘ for the infinite cluster averaging 
and R ,  - N”“ for all cluster averaging, then i p c =  up(l - p p l 2 v p ) ,  where pp and up are 
the percolation order parameter and correlation length exponents respectively. We also 
propose a scaling function representation for the total number of N-step S A W  configuration 
G, ( - p ’ N ’ - ’ )  for infinite cluster averaging, which gives y ” ~ =  y + d ( u ” . -  U). For all 
cluster averaging y will remain unchanged. 

1. Introduction 

Self-avoiding walks (SAW) are random walks with the restriction that no site of a lattice 
is visited more than once. From the physical point of view the flexible linear polymers 
are modelled as SAW, because of the excluded volume effect associated with linear 
polymers. For the last few years much attention has been paid to the study of the 
statistics of S A W  on pure (Euclidean) lattices using approximate analytical theories 
and numerical methods. The main quantities of interest in the study of these statistics 
are the total number of configurations on the N-step walk ( G N )  and their mean square 
end-to-end distance (Rk . ) .  These are respectively the zeroth and the second moment 
of the SAW distribution function G N ( r ) ,  giving the number of SAW configurations of 
N steps with end-to-end distance r, and R’, and G, are found to fit the scaling forms 
(see, e.g., McKenzie 1976) 

G,( =c , G N ( r ) )  -pNNy- ’  

and 

Rh(  = Ghl c r r 2 G N ( r ) )  - N2”. 

p is the connective constant and v and y are two critical exponents dependent on the 
lattice dimensionality d. Since the partition function graphs of an n-vector model in 
the limit n + 0 are all self-avoiding graphs, the above exponents v and y are the 
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correlation length and the susceptibility exponents, respectively, of the n-vector model 
in the limit n -+ 0 (de  Gennes 1972,1979). 

Recently, the effect of quenched randomness (in the lattice) on the critical behaviour 
of SAW statistics is being studied with great interest and these studies have apparently 
led to some confusion. It is well known that quenched configurational averaging over 
the random walk distribution can lead to a non-Markovian nature (see, e.g., Stauffer 
(1985) for the non-Markovian nature of random walk statistics on percolation clusters). 
SAW are non-Markovian to start with and configurational averaging on random (fractal) 
lattices is expected to lead to some interesting features. The problem was first studied 
by Chakrabarti and KertCsz (1981) using a simple-minded application of the Harris 
criterion (Harris 1974) for disordered systems to the SAW equivalent n-vector magnetic 
model in the limit n + 0. They found an indication of a change of the end-to-end 
distance exponent v at weak concentration of dilution. However, a modified analysis 
(Harris 1983) of the Harris criterion in the n-vector model in the limit n -+ 0 indicates 
that the critical behaviour of SAW statistics is not affected by lattice dilution even 
though the specific heat exponent a for SAW is positive. This has been partially 
supported by the field theoretic renormalisation group calculations (Kim 1983) where, 
however, an  instability of the system is apparent when the system randomness grows 
beyond a certain limit, indicating, in such cases, a first order type transition. The real 
space renormalisation group ( R S R G )  studies by Roy and Chakrabarti (1982), Lam and 
Zhang (1984) and Sahimi (1984) also reflect the point that the critical behaviour of 
SAW will remain unchanged for weak dilution. Moreover, the phase diagram for SAW 

on random lattices was studied by Roy and Chakrabarti (1982) employing the RSRG 

method and compared well with that obtained by numerical methods (exact enumer- 
ation technique) (Chakrabarti et a1 1983). Apart from these approximate analytical 
results, Monte Carlo simulations (Kremer 1981) and small series analysis (Hiley et al 
1977) indicated similar observations, in that there is no change in the v value of SAW 

by lattice dilution ( v = v for p > p' ), thus confirming the analytical results. Until now 
we made a brief review for the studies of the statistics of SAW on random lattices for 
p > p c .  We are now calling our attention to the study of SAW on percolation clusters 
at criticality, i.e. at p = p c ,  where the dimension of the lattice is changed from Euclidean 
dimension d to some fractal dimension dF. This study was first performed by Kremer 
(1981) employing the Monte Carlo simulation method on three-dimensional diamond 
lattices and  observed that the exponent v crosses over to a different vpc at p = p c .  
Kremer (1981) also suggested an  approximate modified Flory type formula for v p ~  = 
3 / (2+dF) ,  which agrees well with the Monte Carlo simulation results. This vpc value 
was also calculated employing a large cell RSRG method (Lam and Zhang 1984) and 
Monte Carlo RSRG method (Sahimi 1984) and  was found to be in good agreement 
with Kremer's modified Flory formula. Recently Roy and Manna (1985) studied 
directed SAW ( DSAW) on percolation clusters at p = p c  by the large cell RSRG method 
and found a value for v? (the critical exponent for the end-to-end distance, perpen- 
dicular to the ballistic motion) in good agreement with the modified Alexander-Orbach 
formula ( v f t  = d s / 2 d , )  (Roy and Manna 1985) where ds is the spectral dimension and 
dL  is the spreading dimension of percolation clusters at p = p c  ( v p  = v , ,  = 1). It should 
be mentioned at this stage that all these studies were performed by direct disorder 
(configurational) averaging over the SAW distribution function G, ( r ) .  

Derrida (1982, 1984) argued that (since G N ( r )  is not Gaussian) the above direct 
averaging does not solve the problem completely as there will remain a difference 
between the mean value and the most probable value of the SAW distribution function. 
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He suggested that such a situation could be improved if one takes a configuration 
average over the logarithm of GN ( r ) ,  which will make it a self-averaging quantity. In 
fact, the log average contains more physics of a disordered system, as this type of 
averaging is required to have information regarding any finite temperature thermody- 
namic quantity like the average elastic constant of a linear polymer in impure solvents, 
etc, where one has to average over the entropy (free energy) (Roy and  Chakrabarti 
1984). Recently Roy and  Chakrabarti (1984) studied this type of averaging for DSAW 

(exactly) and  also for ordinary SAW (enumeration) on diluted lattices and they found 
that the critical behaviour remains unchanged below a certain dilution concentration 
c* = 1 - p * ,  dependent on the length of the chains considered ( c *  + 0 for N + CO) and 
a crossover to a higher-order critical behaviour occurs beyond that point. In another 
paper, by Nadal and Vannimenus (1985), the model of DSAW on a diluted lattice has 
been studied with log averaging and it was shown that with any amount of disorder 
the mean value of the number of DSAW is different from its most probable value, 
agreeing with Derrida (1984). They also observed a crossover in y at an amount of 
disorder, dependent on the chain length considered, in agreement with Roy and 
Chakrabarti (1984). 

As such, there is a lot of confusion in the existing literature in comparing these 
results obtained using various kinds of configurational averaging. One should keep 
in mind that the results (e.g. v p  = v for p > p c  and v p  = u p ,  Z v for p = p c ;  crossover at 
p , )  obtained using direct configurational averaging are not comparable, and should 
not be compared, with that using log average (e.g. y p  # y for any p < 1; crossover at 
c = 1 - p  = 0). Therefore, one should define the problem of SAW statistics on random 
lattices in a more refined way. SAW on random lattices involve two random processes- 
first we have to average over many SAW configurations of fixed number of steps ( N )  
on the same lattice configuration of a particular dilution concentration and second we 
have to average over many lattice configurations of a particular dilution concentration. 
This second disorder averaging over the SAW configurations of given N is important. 
We observed from the previous studies that there exists broadly two types of disorder 
averaging in the problem-direct disorder average over GN ( r )  and disorder average over 
logarithm of G ,  ( r ) .  We also noticed that these two types of configurational averaging 
lead to different critical behaviours. Apart from the problem of disorder averaging, 
we have to consider where the self-avoiding walker will move on the disordered lattice. 
One can restrict the movement of SAW only on the infinite percolation cluster, and this 
we call injinite cluster averaging. On the other hand, one may choose a more liberal 
approach so that one can execute SAN on any cluster chosen randomly, which we call 
all cluster averaging. 

In  this paper, we will concentrate only on the direct disorder averaging over G Y (  r ) ,  
for both types of SAW movements: only on the infinite cluster ( 9  2) and  on all clusters 
(§ 3). We have studied here a scaling function representation for R ,  both for infinite 
cluster averaging ( 8  2.1) and  for all cluster averaging ( 9  3.1). We have also proposed 
a scaling function representation of Gh. for infinite cluster averaging ( §  2 . 4 ) .  GN for 
all cluster averaging is trivial and is discussed in 9 3.2. 

2. SAW restricted to move on infinite cluster only (infinite ciuster average) 

In this section, we will try to formulate a scaling formalism for both the average 
end-to-end distance RN and the total number of SAW configurations GN on random 
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lattices, for the case where the SAW is executed only on the infinite percolation cluster. 
We also study the same, making use of the superlattice picture ('node-link-blob' model 
for p > p , )  of the infinite cluster. 

2.1. Scaling theory for RN 

For infinite cluster averaging both Monte Carlo (Kremer 1981) and small series (Hiley 
et a1 1977) studies as well as field theoretic arguments for the disordered n-vector 
model in the limit n + 0 suggests (Kim 1983) that v remains unchanged for any dilution 
above p c .  This is also supported by the extended Harris criterion (Harris 1983). 
However, since with increasing dilution, random folding of SAW chains become increas- 
ingly difficult, the magnitude of RN increases with dilution (see, e.g., Kremer 1981) 
and we thus write for p > p c  

( 2 . l a )  

with (T s 0. It may be mentioned that for a random walk on dilute lattices 2 u  is the 
conductivity exponent t ( > O )  (see, e.g., Stauffer 1985). Here we d o  not have a 
comparable estimate of u. For p = p c ,  there are indications, from Monte Carlo simula- 
tion results (Kremer 1981) and RSRG results (Lam and Zhang 1984, Sahimi 1984), that 
there will be a crossover and  the critical exponent v will change to some vpc value. 
This change in v at p c  is also expected from the fact that the SAW critical exponents 
are dependent only on the dimensionality and  the infinite percolation cluster at p c  will 
have dimensionality d, different from the Euclidean dimensionality d. Thus, at p = p c ,  

(2.16) 

For p below p c  we have to restrict the motion of the SAW only on the 'incipient infinite 
cluster' and this will force the SAW, for some intermediate step sizes, to move on the 
boundary or  the periphery of the incipient infinite cluster. Thus, obviously there will 
be no N dependence on R N ,  and RN will be of the order of the average size of the 
cluster for such N values. So for p < p c ,  

where tP is the percolation correlation length and vp  is the corresponding exponent. 
We now combine all results for R N  in three different limits o f p  into one scaling form: 

For p > pc  and for Z + 00 (where Z E N " ( p  - p c ) ,  N + 00) the scaling function F ( Z )  
must be proportional to Z" so as to be consistent with equation ( 2 . 1 ~ )  and thus 
u = ( v -  v P c ) / x .  Again, for p < p c ,  F ( Z )  should be proportional to Z - " p  so as to be 
consistent with equation ( 2 . 1 ~ )  and thus x =  v p c / v p .  So we get 

u = ( vp/ UP,)( v - v"). (2.3) 

Kremer (1981), from Monte Carlo simulation results, and Lam and Zhang (1984) and 
Sahimi (1984), from large cell and Monte Carlo RSRG studies, found v p c  to be greater 
than v, ensuring therefore U S  0. Kremer also found a similar expression for u with 
a similar kind of argument for scaling function and the scaling form was also checked 
by a Monte Carlo simulation method (Kremer 1981). 
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2.2. Estimate of u from the ‘superlattice’ model 

We now use the de Gennes (1976) and Skal and Shklovskii (1975) ‘nodes and links’ 
model for the infinite percolation cluster at p > p c  (superlattice picture) to study the 
statistics of SAW on infinite percolation clusters for p > p , ,  and to have an independent 
estimate for the exponent (+ in equation (2.3). The nodes of the superlattice are 
separated by a ‘crow-flying’ distance of the order of tP and also by a chemical distance 
(the length of quasi-one-dimensional links) Lp where it is assumed that Lp- ( p  - p C ) - ‘ p .  

Since for RN >> lP, the SAW will effectively see an Euclidean lattice, we assume the 
same relation as ( l . l ) ,  for the size variation, with properly scaled variables: the 
end-to-end distance RN as R N / S P  and the number of steps N as N /  Lp. We thus write 

i.e. 

R , - ( p - p c ) “ “ - ” ~ N U  

giving 

(+ = l p v  - vp 

comparing with equation (2.1 a ) .  It is now well established, both analytically (Coniglio 
1982) and numerically (Pike and Stanley 1981), that lp= 1 for the ‘nodes and links’ 
model. But it will be correct to compare U of equation (2 .3)  with ( l P v  - v p )  taking 
lp = 1 for d 3 6 only, as the ‘nodes and links’ model for the infinite percolation cluster 
for p > p c  is true for d 2 6 and not for any dimension d < 6: the comparison is quite 
good for d 3 6 as both U and ( l p v  - v p )  values are zero. For dimensions less than six, 
in the superlattice picture, the nodes are connected by links along with blobs (‘nodes, 
links and blobs’ model) (Stanley 1977, Coniglio 1982). According to Coniglio (1982), 
we can transform this ‘nodes, links and blobs’ picture into a ‘nodes and links’ picture 
by replacing the links and blobs in between two successive nodes with an effective 
one-dimensional chain (only link), provided that its length depends on the quantity 
under consideration. Here the physical quantity under consideration is SAW on diluted 
lattices and therefore the chemical path length Lp will be the average number of steps 
among the SAW between the extreme ends of the infinite cluster, and obviously Ijp = ls 
where, as pointed out by Coniglio (1982), ls  = v p /  vpc. Putting this value of lp into 
(2.4) we see that this is exactly equal to U of equation (2.3). Therefore one can say 
that the superlattice model is a good model to study SAW on random lattices for p > p c .  
Such a method can also be applied to random walks on infinite percolation cluster 
( p  > p , )  and the scaling relation for the conductivity exponent t compares well with 
the numerical data. In this case we can write lRW= v p / k  where k is the end-to-end 
distance exponent of a random walk on the infinite cluster at p = p c  and it can be 
shown that t = ( v P / k ) ( l  - 2 k ) + P P ,  where Pp is the percolation order parameter 
exponent, and this is exactly the relation found from the scaling theory formalism 
(Gefen et a1 1983, see also Stauffer 1985). 

We now know that l s=  v p / v p c  and also that l s =  1 (exactly) (Coniglio 1982) for 
d 3 6 and v p  = 4 (Stauffer 1979). So for d 3 6, vpc .- f. We believe that this is an exact 
result for d 3 6. This, at least for d 3 6, actually gives support to both Kremer’s (1981) 
modified Flory formula vPc=3/(2+dF) and Rammal et a1 (1984) vpc= 
(l /dB)[3dB/(2 + d B ) ]  where dB is the fractal dimension and dB is the spectral dimension 
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of the backbone of the infinite percolation cluster at p = p , .  But the Rammal et a1 
(1984) formula for vpc will give v p ~ <  v for d < 6, which is neither expected ( S A W  are 
expected to swell more with dilution, cf Sahimi (1984)) nor supported by the results 
of Monte Carlo simulation (Kremer 1981) or large cell (Lam and Zhang 1984) and 
Monte Carlo RSRG (Sahimi 1984). We thus think that Kremer’s formula for v p ~  might 
be the correct estimate of v p c  for d < 6. 

2.3. Phase diagram for SAW on random lattices near p ,  

One important piece of information which we are missing from the above scaling of 
R $  (equation (2.2)) is the nature of the phase diagram for S A W  on random lattices, 
particularly near the percolation threshold p ,  where the scaling holds good. To extract 
such an information we try to formulate the scaling in a slightly different way. Before 
that we redefine the end-to-end distance of SAW R b  and for this we switch over from 
a ‘canonical ensemble’ description to a ‘grand canonical ensemble’ description of the 
walks (Shapiro 1978, Family 1980). In  the ‘canonical ensemble’, the average of R N  is 
taken over all SAW of the same number of steps ( R L =  G,’ I r r 2 G w ( r ) )  whereas for 
the ‘grand canonical ensemble’ SAW of all step lengths N are allowed, with a weight 
f “  for an N-step walk in the ensemble. We then define the mean end-to-end distance 
of SAW ( ifSAW) as [’,,,(f) = 1, r2 Z G, ( r ) f ”  ( I r  I G” ( r)f” ) - ’  and we observe 
(using ( 1 . 1 ) )  that at a critical fugacityf, ( = l / p )  - ( f - f , ) - ” .  

It is by now clear that there is a crossover in the region p - p ,  and let the critical 
fugacity at p c  be f c (  p c ) .  Let us assume that the crossover in the region p - p ,  can be 
expressed using a scaling form for (;AW as 

S i A W  - ( p - P , ) ” ‘ 4 ( ( f - f c (  p c ) ) ‘ + / (  p -PA). (2.5) 

We know that &AW- ( f - f c ( p c ) ) ” “  at p = p c  (here f will act as the relevant field for 
the transition) and &kw- 5;’ - ( p  - p , ) ’ p  at f = f c (  p , )  (here p will act as the relevant 
field for the transition). These two limiting forms can be reproduced from the above 
scaling form (2.5), provided we take the limiting forms for the function d ( X )  (where 
X ~ ( f - f , ( p , ) ) ‘ / ( p - p c ) )  as 4 (X) -cons t an t  at X+O and d ( X ) - X ” p  at X + m .  
Therefore, the crossover exponent is cp = v p c / v p ,  which is the same as l / x  of § 2.1. 
But the main beauty of the scaling form is that the phase diagram for SAW on random 
lattices can be found out near p c ,  because we know SSAW will diverge at the critical 
points and the line joining the critical points for different p will give the phase diagram. 
SSAW diverges where d ( X )  has a zero (say at X , )  and therefore the critical fugacity 
at p is given by 

f c ( p )  = f c ( p c )  +constant(p -p , )”‘ .  (2.6) 
Here, however, a point to note is that this formula will hold good only in the critical 
region of p c  because the scaling forms were constructed only to agree with the asymptotic 
forms of SSAW in that region. 

2.4. Scaling f o r  GN 

Let us remind ourselves that we are continuing our discussion of infinite cluster 
averaging and we consider now the scaling for the total number of SAW GN on random 
lattices. Using such a scaling picture, we show that the exponent y will crossover to 
ypc ( = y + d ( v P c -  v)) at p = p c .  However, one cannot rule out the possibility of 
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non-existence of ypc at p = p c ,  as one could possibly fit G, to p,": e x p ( d N )  instead 
of GN - p [  NY"-', where pp ,  is the connective constant at p c .  Actually this kind of 
behaviour has been noticed in some cases of anisotropic excluded volume effects on 
SAW on pure lattices (Guttmann and Wallace 1985, Manna 1985) and has been searched 
for (with no conclusive evidence) for DSAW on diluted lattices (Nadal and Vannimenus 
1985). Also, an exact solution (Kim and Kahng 1985) for G, on a finitely ramified 
two-dimensional Sierpinski gasket (which has a fractal dimension In 3/ln 2 )  gives a 
unique value of y p ~  ( = 2  ln[(13 -3 f i ) /6 ] / ln [ (7  - J3 ) /2 ] ) ,  suggesting the existence of 
ypc on random fractals (like percolation clusters). We also expect ypc to be different 
from y, as the infinite percolation cluster at pc  will have a dimension d, different from 
the Euclidean dimension d and y is dimension dependent. 

Again we take N and ( p  - p c )  as our scaling variables and a scaling function of 
the form Y ( N ' ( p - p , ) ) .  We take x the same as before because the crossover is of 
the same kind and so x is known in this case ( x  = up ' /  u p ) ,  and we write 

G,+ - p ; N Y P L - I Y ( N ' ( p - p C ) )  (2.7) 
where p,, is the connective constant at dilution concentration (1 - p )  and p,, < p. Let 
us assume, for p > p c ,  

(2 .8a )  

since lattice dilution will not change the critical behaviour of SAW for p > p c .  Also, at 
P = P c ,  

GI. - pLph: NyPL-I .  (2 .8b )  
The above two limiting forms of G, can be reproduced from the scaling form (2.7) 
provided Y ( Z )  (where Z =  N ' ( p - p , ) )  behaves as Y ( Z ) - Z T  at Z + w  and Y ( Z ) -  
constant at Z = 0. Since x = up'/ up, 

(2.9) 
We have two unknown exponents here: 7 and y p ' .  So we try now to estimate 7 from 
an  independent method, so that we can evaluate y p ~ .  We see that the superlattice 
picture is again very useful to estimate 7. For this we consider the scaling picture of 
G N (  r ) ,  which is 

Gh - p > N  y -  '(P - & I -  

7 = ( u p /  V " ) (  y - Y P ' ) .  

(2.10) 

In the superlattice model we know, from equation (2.4), that R N  can be expressed as 
R N  - &( N /  LP)", and so 

G N (  r )  - p.," N y - l - d v h (  r /  N " ( p  -pc)ipu-"p). 

Therefore 

for P ' P c  
= ,,,.p"Y-'( p - p C ) d ( 6 p Y - Y p )  

giving 

7 = d ( i p Y  - Y p )  = (Yp/ V p L ) (  y - y P c ) .  

Taking lp= is = v p / u p ~  (Coniglio 1982), we obtain 

yp' = y + d ( YP, - U). (2.11) 
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Table 1. The theoretically estimated values of u p ,  (=3/ (2+ dF)) ,  C p c  (from equation (3.3)), 
y P c  (from equation (2.11)) and f p c  ( = y ,  from equation (3.4)) are given for different 
dimensions, taking the percolation exponent values from the best estimates (Stauff er 1979, 
1985). 

d 2 3 4 5 6 

U a 0.588 I 2 
3 I I 1 

I 
2 Y 0, 0.770 0.656 0.57 0.52 

; p ,  0.73 0.49 0.29 0.19 0 
Y 43/32 1.166 1 1 1 
Y pc 1.384 1.379 1.21 1.12 1 

?Pc ( = y )  43 f 42 1.166 1 1 1 

(0.767)" (0.65)b 

(1.383)' (1.302)' (1.22)' (1.05)' (1)' 

a Large cell and Monte Carlo RSRG results (Lam and Zhang 1984, Sahimi 1984). 

' From equation (2.13). 
Monte Carlo simulation results (Kremer 1981). 

The values of ypc for different dimensions are given in table 1 .  We notice that for 
d 2 6 ( d ,  = 4), ypc = 1 which should be obvious, as in these dimensions the SAW behave 
like random walks (the excluded volume effect disappears for dimensions above four). 
Moreover we know that y = 1 reflects the difficulty for a SAW to return near its starting 
point (de Gennes 1979) and  this is very true on the infinite percolation cluster at p = p c  
for d 3 6, because of the disappearance of the blobs (Coniglio 1982) so that it becomes 
difficult for a SAW to return to its origin. 

We can also find ypc by an  alternative method, making use of a scaling form for 
the 'grand canonical' generating function G ( = Z N  G N f N )  of SAW. We can write, in 
a fashion similar to (2 .5) ,  

(2.12) 

We know that G - ( f - f c (  p c ) ) - y p c  at p = pc  and G - ( p  - p C ) - ' p  at f = f c (  p , )  where yp 
is the susceptibility exponent for percolation. These two limiting forms are reproduced 
from the scaling equation (2.12) provided we take the form of the scaling function 
+( U )  (where U = ( f - f c ( p c ) ) ' / (  p - p c ) )  as +( U )  -constant at U - 0  and as + ( U )  - 
U'p at U + CO. We thus get the crossover exponent as 6 = ypc/yp. However, since the 
crossover is of the same kind (because of the singularities at the percolation point), 
we may write 4 = cp (=  v 'c/ vp) and so we obtain 

(2.13) 

The estimated values of ypc from this equation is also given in table 1 and compared 
with those obtained from equation (2.11). 

3. SAW on any cluster chosen randomly (all cluster averaging) 

In this section we will confine ourselves to the study of the statistics of SAW on random 
lattices where the SAW can be executed on any cluster chosen randomly. For this, we 
have to perform all cluster averaging for the disorder. We develop here a scaling 
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formalism for the end-to-end distance of the SAW, similar to that of random walks on 
any cluster of a disordered lattice (Gefen et a1 1983). We also make here a comment 
on the average number of SAW configurations for all cluster averaging. 

3.1. Scaling for RN 

We try first to write the expressions for RN in three different limits of p .  
For P ' P c  

RN - ( p  - p , ) " N " .  ( 3 . 1 ~ )  

v is here again the same as that for SAW on a pure lattice for the same reason as that 
for the infinite cluster averaging, discussed before. However, 6 is different from u of 
equation ( 2 . 1 ~ ) ;  the factor ( p - p c ) '  in ( 3 . l a )  can be replaced (see, e.g., Stauffer 1985) 
by ( p  -pc)"( P / p ) ,  where P is the percolation order parameter, giving 6 = u +  PP/2, 
Pp being the percolation order parameter exponent. It may be noted that for annealed 
impurities, all cluster averaging (Harris 1983) gives 6 = 0 because of the validity of 
the independent configurational averaging in the numerator and the denominator in 
RN in (1.1) (cf Rammal et a1 1984, Lyklema and Kremer 1984). 

At p = p c  

R N  - N C P c  (3.16) 

where C p c  is not equal to vpc, the critical end-to-end distance exponent of SAW when 
the movement of the SAW is restricted only on the infinite cluster. Similar to the random 
walk problem on any cluster (cf Stauffer 1985), we may write for p < p c  

R X = C  ~ s R ~ - ( p - p c ) ~ ~ - z u ~  
s 

for some finite values of N, where the average over all clusters of different masses S 
is reflected through R S ,  the average cluster radius of size S, and P, is the probability 
of a site belonging to a cluster of mass S. Thus, for p < p c ,  

R,V - ( p  - p c ) p ~ ' 2 - " ~ ,  ( 3 . 1 ~ )  

Knowing these three limits, we may combine them into one scaling form with 
scaling fields N and ( p  - p c )  as usual. Let us have a scaling function e(  N ' ( p  - p c ) ) ,  
where y is an  unknown crossover exponent, and we write 

(3.2) 

Reproducing the three limits from this scaling equation, we get the crossover exponent 
a s y =  Cpc/(vp-pp/2) and  C p c =  v ( v p - p p / 2 ) / ( v p + u ) .  Knowingufromequat ion  (2.3) 
of the previous section, we obtain 

RN - N c p ' e (  Nf(  p - p c ) ) .  

i P c =  VP'(1 -@p/2vp). (3.3) 

The values of C pc for different dimensions are given in table 1. 

3.2. Average G ,  

In fact, for all cluster averaging, y can be shown to remain unchanged even at p = p c ,  
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i.e. T p c  = y. This is because 

where {C}=a l l  the SAW configuration on the pure lattice and  Pwalk= 1 if the SAW 

configuration is possible on the dilute lattice and is zero otherwise. As such, Pwalk = 
p , p 2 p 3 .  . . p N ,  where p t  are the occupation operators ( p ,  = 1 or 0) of the bonds of the 
lattice through which the SAW configuration on the pure lattice passes. Now, since a 
SAW never visits any bond more than once, all p !  are different and 

(3.4) 

with p p  = pp.  y, thus, remains exactly the same as that on the pure lattice (Harris 
1983, Lyklema and Kremer 1984, Rexakis and Argyrakis 1 9 8 3 ) .  

4. Summary 

In summary, we have studied SAW on lattices having quenched random dilution where 
the SAW are restricted to move ( a )  only on the infinite percolation cluster and (b )  on 
any cluster chosen randomly. The disorder (configurational) averaging procedure we 
employed is the direct average over G,(r ) .  We have studied a scaling function 
representation for R,, which describes a crossover from ordinary SAW (for p > p c )  to 
SAW on a percolation cluster at p = p c ,  both for infinite and all cluster averagings. For 
all cluster averaging we find the end-to-end distance exponent f i p c ' ,  of SAW on a 
percolation cluster at p = p c ,  to be related to the end-to-end distance exponent v p ,  for 
SAW restricted on the infinite percolation cluster: c P ~  = v p c ( l  -pp/2vp)  where vpc= 
3 / ( 2 +  dF). We have also shown that a scaling function representation of G, indicates 
that y will change to y p ~  at p = p c  where y p ~  = y + d (  Y p c  - v )  for infinite cluster averaging 
where, as for all cluster averaging, y will remain unchanged even at p = p L .  
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Nore added in proof I t  may be noted that there will be no self-avoiding polygons (SAP)  for walks on  infinite 
percolation cluster a t  p = p ,  (C, = 0 for N + zc, where C ,  is the total number of S A P ) .  This is essentially 
because of the (singly connected) links in the infinite percolation cluster structure at p c .  Therefore, phc 
(giving C, - ( p L ) ' N " - ' )  for SAP is zero at p,. and  thus is definitely different from c(,,, for SAW. (This  may 
be true for p a p ,  also.)  Thus,  p L  ( for  l o o p s ) < p  (for walks) on fractal lattices and  this has also been 
observed for  some constrained (e.g.  directed1 SAW on Euclidean lattices ( M a n n a  1986). 

In  5 2.4, we discussed that there might have a possibility of non-existence of y for S A W  on ( r andom)  
fractal lattices. Recently Vannimenus and  KneieviC ( 1986) have shown exactly, following the original study 
of SAW statistics on non-random fractals by Dhar  (19781, the  non-existence of y for branched polymers on 
Sierpinski type (non- random)  fractals, al though for S A W  on such fractals y seems to  be clearly defined 
(Elezovic er a[  1986). 
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